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Abstract - We describe a new method for determining the ratio of the rate of (α , n) source neutrons to the rate
of spontaneous fission neutrons, the so called α-ratio. This method is made possible by fast neutron counting
with liquid scintillator detectors, which can determine the shape of the fast neutron spectrum. The method
utilizes the spectral difference between fission spectrum neutrons from Pu metal and the spectrum of (α , n)
neutrons from PuO2. Our method is a generalization of the Cifarelli-Hage method for determining keff for
fissile assemblies, and also simultaneously determines keff along with the α-ratio.

I INTRODUCTION

Methods based on time-correlated neutron signals have long been used to characterize fissile materials. Typi-
cally one uses 3He tubes to record the arrival times of neutrons from the fissile source, and then by segmenting
the arrival times using time windows of varying width, one can use the statistics of the number of neutron
counts in the time window as a function of the width of the time window to characterize the neutron source.
Unfortunately the cross-section for neutron capture in 3He is only large enough for the purposes of collecting
these counting statistics after the fission neutrons have been thermalized in a moderating material. Therefore the
time windows must be at least tens of microseconds long to pick up counts from the same spontaneous fission
or chain. In the case of a strong neutron source such as Pu this means that many fission chains will be generated
within the time windows. Because the neutron time correlations of interest are generated by individual fission
chains, the time correlation information that can be extracted using 3He tubes is diluted, requiring high statistics
to disentangle the contribution from separate chains.

Liquid scintillators on the other hand, can directly detect unmoderated fission neutrons, because the reaction
used for detection is elastic scattering of neutrons primarily on hydrogen, producing a recoil proton from which
scintillation light is produced promptly. Consequently, counting can now be on the nanosecond time scale. One
no longer needs to open time windows 100’s of microseconds long to pick up the correlation signal as with
3He, but only of order 100 nanoseconds. These shorter time windows will enormously reduce the number of
overlapping chains within a time window, and we will be in a regime where time windows encompass neutrons
from a single fission chain.

In contrast to bare 3He tubes, which can detect only thermal neutrons, liquid scintillators can detect only
neutrons above a threshold of about 1 MeV. The threshold is because below an MeV the recoil protons do
not produce a sufficiently unique scintillation light pulse to confidently distinguish them from the light pulse
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produced by gamma-ray Compton interactions. The total light collected by the fast proton recoil in the scintil-
lator is statistically proportional to the incident neutron energy. This enables a statistical energy spectrum to be
determined. This capability allows the current new analysis.

Figure 1: Liquid scintillator array used for measuring the double and triple neutron correlations.

This report describes our efforts to use the time correlations of fast neutrons together with their energy spec-
tra as measured directly in a liquid scintillator array to distinguish Pu metal from Pu oxide and also determine
the α-ratio of the Pu oxidea. Some earlier work1, 2 had conceptually shown by way of Monte Carlo simulation
that this method could work. In this paper, we demonstrate that the method actually works experimentally. The
liquid scintillator array used to obtain the results that we will discuss below is illustrated in Fig. 1. If the object
at the center of the array contains a multiplying material, each spontaneous fission will typically generate a
chain of detected neutrons in the liquid scintillator array. An important difference between Pu metal and Pu
oxide is that the α particles produced by the α-decay chain of Pu carry enough energy to cause 18O to emit a
neutron via an (α ,n) reaction. Although the average energy of this (α ,n) reaction is 1.9 MeV, close to the aver-
age for fast fission, the energy distributions are different. We will show in the following that these differences
can be exploited to determine the α-ratio. These neutrons are emitted randomly, and in the case of Pu oxide
the emission rate of these neutrons is comparable to the rate of neutron emission due to spontaneous fission. It
is important to note that while the proposed method has been tested successfully for unmoderated systems, its
possible application to moderated systems remains yet to be determined.

The key idea is that the count rate, for fast neutron counting, can be partitioned into a contribution with (α ,n)
spectrum and a contribution with fission spectrum. The separate contributions can be determined from liquid
scintillator data by a principal component analysis. The ratio of these contributions gives a relation between
α-ratio and multiplication. This enables the Cifarelli-Hage3, 4 correlated moment analysis for determining
multiplication given α-ratio to be solved for both quantities.

athe α-ratio is the ratio of the (α ,n) neutron source strength to the spontaneous fission source strength in units of neutrons/second.
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II DESCRIPTION OF PU OBJECTS MEASURED FOR THE REFERENCE
NEUTRON SPECTRA

The algorithms developed in this paper rely upon the knowledge of two important neutron energy spectra: (a)
the energy spectrum of fission neutrons, and (b) the energy spectrum of O(α ,n) neutrons. If these two reference
neutron energy spectra are sufficiently distinct, an arbitrary measured neutron energy spectrum should be re-
constructable by combining the two reference spectra weighed appropriately.

To produce pure neutron spectra for both fission neutrons and O(α ,n) neutrons, we need sources that will
primarily produce these neutrons of interest.

II.A Metallic plutonium

For objects containing only gram quantities of plutonium, the system does not multiply, and the neutron emis-
sion will be dominated by the spontaneous fission of 240Pu. For kilogram quantities of metallic plutonium,
the multiplication can be significant, in which case the fission neutron rate is dominated by induced fissions in
239Pu. In general, the fission neutron energy spectrum will be a mix of 240Pu spontaneous fissions and 239Pu
induced fissions. Fortunately, the fission neutron energy spectra for both 240Pu and 239Pu are very similar, as
shown in Fig. 2. Therefore, the fission spectrum of objects containing plutonium will be insensitive to multipli-
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Figure 2: Energy distributions of neutrons from (a) 240Pu spontaneous fission (red), (b) 239Pu 2 MeV induced
fission (green), O(α ,n) reactions in (c) PuO2 (blue) and (d) UO2 (magenta). Fission spectra,5 (α ,n) spectra
computed using SOURCE-4C.6

cation.
In Fig. 3(b), we show the spectrum of energy deposited in our liquid scintillator by the fission neutrons for

a bare 2.35 kg plutonium ball of density 15.92 g/cm3 consisting of 93.88% 239Pu, 5.96% 240Pu, 0.13% 241Pu,
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0.37% 241Am plus trace amounts of other isotopes.

II.B Plutonium dioxide

For the oxide form of plutonium, namely PuO2, the fast neutron spectrum will also contain a contribution
from (α ,n) neutrons. We have found from computer simulations that the ratio of the (α ,n) neutron rate to
the spontaneous fission neutron rate, also referred to as the α-ratio is of the order of 0.8. This α-ratio is
a consequence of the fact that 240Pu is a very strong spontaneous fission neutron source, and therefore in
general the neutrons coming out of PuO2 will contain comparable numbers of fission and $α ,n) neutrons. If we
were able to turn off fission reactions for both 239Pu and 240Pu, we could measure the O(α ,n) neutron energy
spectrum produced by the plutonium decay α-particles. While this would be possible in simulation, fission
reactions cannot be turned off in nature. Of course, one might try using a theoretically derived (α ,n) neutron
spectrum to separate an observed fast neutron spectrum into a fission piece and an (α ,n) piece. Unfortunately,
converting a theoretical neutron spectrum into a liquid scintillator spectrum would require knowing how to
convert an intrinsic neutron energy spectrum into a spectrum of liquid scintillator pulses with the pulse shape
that one somewhat arbitrarily identifies as a neutron. This is very difficult to do in practice.

While we have a α-ratio of the order of 0.8 for PuO2, the α-ratio is of the order of 30 or more for UO2 (for
an uranium composition close to HEU). This means that the vast majority of the neutrons emitted by uranium
dioxide are O(α ,n) neutrons. Measuring the spectrum of neutrons coming off of UO2 would be roughly equiv-
alent to measuring the O(α ,n) neutrons directly, without much pollution from fission neutrons. If it happened
that the energy spectra of the O(α ,n) neutrons from PuO2 and UO2 are similar, we could substitute PuO2 with
UO2 to estimate the energy spectrum of PuO2. Fig. 2 shows the energy distribution of O(α ,n) neutrons (mainly
from 18O) for both PuO2 (blue) and UO2 (magenta). The (α ,n) neutron spectra from PuO2 and UO2 are very
close; therefore when analyzing the fast neutron spectrum from objects containing PuO2 one can use the UO2
(α ,n) spectrum as a surrogate for the PuO2 (α ,n) spectrum. The objects used for measurement of the O(α ,n)
spectrum were 3 UO2 objects of weights 1485.9, 1463.5, and 1516.7 g. The uranium in these objects consisted
of 93.4% 235U, 5.7% 238U, 0.86% 234U. The oxygen consisted in 99.8% 16O, 0.04% 17O and 0.2% 18O. The
total 18O mass was 1 g, which is the source of the (α ,n) neutrons.

The 3 uranium oxide objects were located in the middle of our array of liquid scintillators depicted in Fig. 1.
The spectrum of energy deposited in the liquid scintillator by the UO2 neutrons is shown in blue in Fig. 3(a).
Because the UO2 objects are weak neutron sources, we need to subtract the background that was present during
the measurement to get to the UO2 neutron spectrum. A 15-hour background spectrum was taken within 2
days of the experiment. The neutron energy spectrum from that background measurement is shown in green in
Fig. 3(a). The rate of that background is 1.6 n/s and is likely due to cosmic-rays. Since the count rate for the
measured objects is 13.52 n/s, the detection system system is measuring background neutrons 12% of the time.
Thus, the blue curve in Fig. 3(a) contains both the UO2 neutrons and 12% of background neutrons. Subtracting
the background spectrum in green from the UO2 spectrum in blue, we obtain the background-suppressed UO2
neutron spectrum shown in blue in Fig. 3(b).

Regarding the fission neutrons emitted by both the spontaneous fissions of 238U and the induced fissions in
235U, since only 2 to 3% percents of the neutrons are due to fission in UO2, the red curve in Fig. 3(b) would
have to be shifted down by almost 2 orders of magnitude before being subtracted from the blue curve to produce
a pure (α ,n) neutron spectrum from uranium decay α-particles on oxygen. We can thus see that the normalized
U fission curve would very small compared to the observed UO2 curve, and therefore the effect of subtracting
the U fission spectrum would be negligible. Given the resemblance between the (α ,n) neutron energy spectra
from UO2 and PuO2 (see Fig. 2), we will from this point on use the (α ,n) neutron energy spectrum from UO2
as a substitute for the (α ,n) neutron energy spectrum for PuO2.
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Figure 3: Fast neutron energy spectra. The UO2 curve represents 1800 s of data, the background 53,442 s,
and the Pu metal ball 596 s. The measured count rates for the UO2 objects, background and Pu metal were
13.52 n/s, 1.6 n/s, and 9123 n/s, respectively.

III MOMENT EQUATIONS WITH DIFFERENT NUCLEAR DATA AND
EFFICIENCIES FOR (α ,n) NEUTRONS AND FISSION NEUTRONS

The times of arrival of the neutrons in each of the liquid scintillator cells were recorded. Randomly splitting the
sequence of time tags into N segments of length T — where T is of the order of nanoseconds to hundreds of
microseconds — one can count how many neutrons arrive in the first segment, how many in the second segment,
in the third one, etc. and build distributions bn(T ) of the number n of neutrons arriving in the segments of length
T . For the sake of illustration, one such count distribution is shown in Fig. 5. By repeating this procedure for
segments of different lengths T , multiple count distributions bn(T ) can be obtained.

These count distributions bn(T ) can be used to determine the strength Fs of the spontaneous fission sources
in the object, the efficiency ε of the liquid scintillator array, and multiplication M of fissile material.7 We will
show these count distributions can also be used to determine the rate of neutrons from the (α ,n) reactions. This
will be shown by way of the first three moment equations for the count distributions.

The count rate can be partitioned into a contribution with (α , n) spectrum and a contribution with fission
spectrum,

R1 = Sαqαεα +Fsν̄sεqM+Sα pα ν̄αεqM. (1)

The three contributions to Eq. (1) are illustrated in Figs. 4. The first term is due to (α , n) neutrons that escape
without inducing fission, Fig. 4(c). Because of the spectrum difference of efficiency for the liquid scintillator
detectors, εα can be different from ε . The second term is the usual count rate from spontaneous fission induced
chains, Fig. 4(a). The last term is due to (α ,n) neutron induced fission. As noted by Böhnel8 and Hage-
Cifarelli,4 the probability for an (α , n) neutron to induce fission is in general different from a fission spectrum
neutron. (This is most obvious for 9Be(α ,n)12C, where the high energy neutron induces fission with a higher
probability pα than fission spectrum, and with a higher ν̄α .) Also qα = 1− pα , the probability for neutron
escape can be different for (α ,n) spectrum neutrons that fission spectrum. It is further assumed that the induced
fission by the (α ,n) neutron emits neutrons with a fission spectrum. The (α ,n) neutron induced fission acts like
an effective spontaneous fission for the rest of the chain, Fig. 4(b).
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Figure 4: Three classes of neutrons contributing to the detector.

The ratio of neutron source rates is the α-ratio, here denoted A, b

A =
Sα

ν̄sFs
.

For time-gated fast neutron counting, the time dependent second and third moments of the random time gate
distribution bn (T ) are a generalization of the formulas given by Prasad-Snyderman.7 Normalizing by the count
rate,

Y2F (T ) =
(εqM)2

(εqM)(1+ pα ν̄αA)+ εαqαA
[D2s + ν̄α pαAD2α +D2 (M−1)(1+ ν̄α pαA)]

(
1− 1− e−αT

αT

)
(2)

Y3F (T ) =
(εqM)3

(εqM)(1+ pα ν̄α A)+ εα qα A
[D3s + pα ν̄α AD3α +(M−1)(1+ pα ν̄α A)D3]

(
1− 3−4e−αT + e−2αT

2αT

)
+

(εqM)3

(εqM)(1+ pα ν̄α A)+ εα qα A

[
2D2 (M−1)(D2s + pα ν̄α AD2α )+2(M−1)2 D2

2 (1+ pα ν̄α A)
](

1− 2− (2+αT )e−αT

αT

)
(3)

For the correlated triples, the two terms with different time dependences correspond to the following topological
classes c: in the first term, all counted neutrons have a single common ancestor, while for the second time
dependence term two of the counted neutrons have a common ancestor fission, and the third counted neutron
has an ancestor with the neutron that induced that fission.

bFor 3He counting the efficiencies are the same. Further, for PuO2, qα can be approximated by q. With these simplifications,

R1 = εqSα + εqMν̄sFs + εqMSα pν̄

= εqMν̄sFs + εqSα [1+ ν̄ pM] .

Because pM = M−1
ν̄

, the term in square brackets becomes [1+(M−1)] = M, so

R1 = εqMν̄sFs (1+A) .

cFor 3He counting, both topological classes have the same time dependence, comparable to that of the first term of Eq. (3).
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In contract with 3He counting, the ratio of the two terms in Eq. (1) becomes measurable for fast counting,

ρ =
Sαqαεα

(εqM) [Fsν̄s +Sα pα ν̄α ]

=
Aqαεα

(εqM) [1+Apα ν̄α ]
.

The approximations for PuO2 are that (a) pα ' p, so qα ' q and (b) ν̄α ' ν̄ , so that

ρ =
A εα

ε

qα

q

M+Apα ν̄αM

'
A εα

ε

1+(M−1)+A(M−1)

=
Arε

1+(M−1)(1+A)
. (4)

The ratio rε =
εα

ε
is an intrinsic property of the liquid scintillator spectral response, and can be determined. For

our liquid scintillators we find rε ' 1.6. For PuO2, the additional measured quantity defined in Eq. (4) will
turn out to give an additional relation between M and A, and enable one to determine both A and M by the
Cifarelli-Hage moment method.

With the relation provided in Eq. (4), the Cifarelli-Hage equation becomes

R2
2F

R3F
=

[D2s +(1+A)(M−1)D2]
2

D3s (1+A)+2(1+A)(M−1)D2sD2 +2 [(M−1)(1+A)]2 D2
2 +(1+A)(M−1)D3 (1+A)

(5)

For A=0, this formula is the familiar Hage-Cifarelli equation for M. For A6=0, all the M dependence is in the
combination (1+A)(M−1), and this can be expressed in terms of the measured ρ , and the unknown A using
Eq. (4),

(1+A)(M−1) =
rεA
ρ
−1. (6)

Substituting Eq. (6) into Eq. (5), we find that A satisfies the following quadratic equation:

2D2

(
rε

ρ
A−1

)[
D2s +D2

(
rε

ρ
A−1

)]
+(A+1)

(
D3s +

(
rε

ρ
A−1

)
D3

)
=

ρ

rε
+1

ρ +1

[
D2s +

(
rε

ρ
A−1

)
D2

]2 R3F

R2
2F

(7)

After solving Eq. (7) for A, Eq. (6) then determines M. In the next sections, we show that this equation,
together with the neutron spectral information provided by the liquid scintillators, can be used to measure both
the α-ratio and the multiplication of plutonium oxide samples of interest.

IV LIQUID SCINTILLATOR TIME CORRELATION RESULTS

For the 2.35 kg Pu ball previously described, the count distribution for T=1 µs, and the moments Y2F (T ) and
Y3F (T ) are shown in Fig. 5. The total time is shared among the 6 time gates in such a way as to keep the errors
on the Y2F (T ) and Y3F (T ) values for the different time gates approximately equal. Fast neutron counts are not
re-used among different time gates. These data correspond to a measurement of 113 seconds, 21.2 seconds of
which contributed to the 1 µs time gate, and the remaining time was shared among the other time gates. The
values of R1, R2F and R3F can be extracted from the graphs by fitting the data to the time dependence, C̄ = R1T ,
and for Y2F (T ), Eq. (2), and for Y3F (T ), Eq. (3).
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Figure 5: Count distribution and moments for Pu metal ball. T between 5 ns and 1 µs. The set of parameters
used for the moment reconstruction (M,ε ,α)=(2.1, 4.6%, 0.006) was determined using the measured moments
and spectral information.

Fig. 6 shows the results for a PuO2 sample containing 8.72 g of plutonium. The measurement thereof was
much longer as the weight of PuO2 was just a few grams.
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Figure 6: Count distribution and moments for PuO2 sample. T between 5 ns and 1 µs. The set of parameters
used for the moment reconstruction (M,ε ,α)=(1.06, 5.1%, 0.86) was determined using the measured moments
and spectral information.

V LIQUID SCINTILLATORS SPECTRAL INFORMATION

In this section we describe experimental results which illustrate how the information contained in the spectrum
of energies deposited by the fast neutrons in the liquid scintillator cells can be used to differentiate metallic
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plutonium from plutonium dioxide. For the measured PuO2 sample, the spectrum of energies deposited by the
fast neutrons is shown in green in Fig 7, along with the Pu metal neutron spectrum in red and the pure (α ,n)
neutron spectrum from α-particles on oxygen in blue (the latter two directly copied from Fig. 3(b)). In Fig. 8
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Figure 7: Fast neutron energy spectra for PuO2 sample (green), along with Pu metal ball (red) and modified
UO2 (blue) spectra. The experimental curve for PuO2 represents 7200 s of data.

we show that the red and blue spectra can be added with suitable weights to reconstruct the green curve. In
particular, by adding the 240Pu spectrum pre-multiplied by 0.45 to the (α ,n) spectrum pre-multiplied by 0.55,
one obtains the reconstruction spectrum of energies deposited shown in red in Fig. 8(b). On the other hand,
when one measures the Pu metal ball, the weights that are optimal for the reconstruction of the spectrum of
deposited energies are 0.995 of the 240Pu spectrum and 0.005 of the (α ,n) spectrum. So we find that just
measuring the spectrum of energies deposited in a liquid scintillator by fast neutrons is sufficient to distinguish
Pu metal and Pu oxide.

Setting ρ=1.24, the solution to Eqs. (6) and (7) with M ≥ 1 is A = 0.86±0.08, M = 1.06±0.09. The exact
value of 0.8 for A is within 1 standard deviation of our solution. Using R2F = R2/R1 calculated from Eqs. (1)
and (A.14), we determined the value of ε to be 5.1%, while Eq. (1) implies a spontaneous fission source rate
of 662± 57 neutrons/sec. Although not exactly the same strength as the true value of 519 n/s, the implied
spontaneous fission rate is within 20% of the correct answer. If we measure 10 times longer, the solution with
M ≥ 1 becomes A = 0.84±0.02, M = 1.05±0.02, ε=5.3%, and the spontaneous fission source rate becomes
638±11 neutrons/sec. For the metallic plutonium ball, our algorithm gives ρ=0.005. The solution to Eqs. (6)-
(7) with M ≥ 1 is A = 0.006± 0.0001, M = 2.1± 0.04. The value of ε is 4.6% and the source strength is
149,015±2,700 neutrons/sec, which is off the true value by less than 1.5%, or less than 1 standard deviation.

VI CONCLUSION

In this paper, we have shown first of all that measuring the energy spectrum of the fast neutrons using a liquid
scintillator allows one to immediately distinguish the metallic and oxide forms of plutonium. In addition, com-
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(a) Factors by which the blue and red spectra shown in Fig. 7
must be multiplied to reconstruct the spectrum of energies
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Fig. 7 and the optimal weights shown on the left.

Figure 8: Reconstruction of the PuO2 objects using the sum of two weighed energy spectra.

bining this spectral information with the Feynman 2-neutron and 3-neutron correlations allows one to extract
the α-ratio without explicitly knowing the multiplication. Given the α-ratio one can then extract the multi-
plication as well as the 239Pu and 240Pu masses directly from the moment equations. In principle the same
techniques could be used to distinguish metallic Pu from other compounds of Pu, such as PuF2, where (α ,n)
neutron emission is also significant.
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A DERIVATION USING GENERATING FUNCTION

Eq. A.16 of Prasad et al.9 gives the random time gate count distribution generating function for fission chains
initiated by single neutrons. The formulas of Prasad et al.9 are appropriate for 3He counting, but the asymptotic
limit T → ∞ gives the same expressions as for fast counting.10 We use this to derive the expressions for Ri

below. In the limit of λT � 1, the two exponential termsd e−λ t become negligible and we get

lim
λT�1

ln(Π(y,T ))→ ST [h(1− ε (1− y))−1] (A.1)

where S is the neutron source strength, T is the time gate width, h is the Böhnel8 fission chain generating
function, y is the generating function variable, and ε is the fission neutron detection efficiency.

dtypographical error in Eq. A.16 of Prasad et al.:9 the two exponentials e−λT in the integrand should read e−λ t .
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Spontaneous fission initiated chain. Fig. 4(a) shows a fission chain initiated by a spontaneous fission. The
rate of spontaneous fissions is Fs in units of spontaneous fissions per second. Spontaneous fissions will produce
a number of neutrons sampled from a distribution Cs

n. Each one of these fission neutrons has a probability p of
inducing a subsequent fission, which will in turn produce a number of neutrons sampled from a distribution Cn.
Neutrons of the fission chain initiated by spontaneous fission can leak with probability q, and have a probability
ε of being recorded. For fission chains initiated by spontaneous fissions, Eq. C.7 of Prasad et al.9 indicates that
ln(Π(y,T )) should bee

lim
λT�1

ln(Π(y,T ))→ FsT (Cs [h(1− ε (1− y))]−1) (A.2)

Fig. 4(b) and 4(c) show the contributions from (α ,n) neutrons.

Direct (α ,n) neutron detector count. The neutrons created by the (α ,n) reaction will leak with a probability
qα (qα = 1− pα ), before they induce any fissions, and will be detected with probability εα , as shown in Fig. 4(c).
Therefore, we need a term:

+SαT qα [1− εα (1− y)] (A.3)

where εα is the (α ,n) neutron detection efficiency.

Induced fission contribution. Spontaneous fissions are not the only source of fission chains. Each (α ,n)
neutron has a probability pα of inducing a fission, which produces a number of neutrons sampled from a
distribution Cα

n . For PuO2 it is a good approximation that following this first induced fission the rest of the
fission chain turns into a fission chain of the type shown in Fig. 4(a), with properties p and Cn. The term

+SαT pαCα [h(1− ε (1− y))] (A.4)

is added to ln(Π(y,T )) to account for the (α ,n) neutron initiated fission chains. Sα = Aν̄sFs is the (α ,n) neutron
source strength in units of neutrons per second.

The complete equationf for ln(Π(y,T )) thus reads

lim
λT�1

ln(Π(y,T ))→ FsT (Cs [h(1− ε [1− y])]−1)+SαT (pαCα [h(1− ε (1− y))]+qα [1− εα (1− y)]−1)

(A.5)

For y=1, this expression vanishes, corresponding to Π(y,T ) =
∞∑

n=0
bn (T ) = 1. For the chain rule differentiations

that follow, it is convenient to define the functions

z(y) = 1− ε (1− y) ,
∂ z
∂y

= ε, (A.6)

etypographical error in Eq. C.7 of Prasad et al.:9 the left hand side should be Cs [h(y)]
f This generalization reduces, for the terms in Eq. A.5 proportional to Sα , to Eq. A.1 in the particular case where (α ,n) neutrons have

the same energy spectrum as fission neutrons, i.e. pα = p, qα = q, Cα
n =Cn, and εα = ε . Using Böhnel’s equation h(z) = qz+ pC [h(z)],

the term factor of Sα T in Eq. A.7 reduces to Eq. A.1:

ST (pCn [h(z)]+qz−1) = ST (h(z)−1)
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and similarly for zα , to rewrite Eq. A.5 as

ln(Π(y,T ))→ FsT (Cs [h(z)]−1)+SαT (pαCα [h(z)]+qαzα −1) (A.7)

For the sake of the remaining part of this chapter, it is convenient to rewrite Böhnel8’s Eqs. 21-23 using
M = 1/(1− pν̄) and q = 1− p:

∂h
∂y

∣∣∣∣
y=1

= qM

1
2!

∂ 2h
∂y2

∣∣∣∣
y=1

= D2 (M−1)(qM)2

1
3!

∂ 3h
∂y3

∣∣∣∣
y=1

= (qM)3
[
D3 (M−1)+2(M−1)2 D2

2

] (A.8)

where D2 = ν2/ν̄ , D3 = ν3/ν̄ . The average number of neutrons emitted in induced fission is

ν̄ =

νmax∑
ν=1

νCν , (A.9)

In general, the fractional moments of the Cν distribution, νn =
νmax∑
ν=n

(
ν

n

)
Cν , can be determined by derivatives of

the generating function:

νn =
1
n!

∂ nC (x)
∂xn

∣∣∣∣
x=1

for n≥ 1. (A.10)

Using Eqs. 115 and 118 of Prasad-Snyderman,7 and also Eq. A.8 of Hage-Cifarelli,4 it can be shown that

ln(Π(y,T )) =
∞∑

k=1

Yk (T )(y−1)k . (A.11)

This relation is true for fast counting as well. We define the Ri’s as

RiT = lim
T→∞

Yi (T ) . (A.12)

Taking the derivatives of ln(Π(y,T )) in Eq. A.7 and using Eq. A.6, we get

R1 =
1
T

∂ ln(Π(y,T ))
∂y

∣∣∣∣
y=1

= Fs

(
∂Cs

∂h
∂h
∂ z

∂ z
∂y

)∣∣∣∣
y=1

+ Sα

(
pα

∂Cα

∂h
∂h
∂ z

∂ z
∂y

+qα

∂ zα

∂y

)∣∣∣∣
y=1

=εqMν̄sFs +(εqMpα ν̄α + εαqα)Sα (A.13)

The second derivative reads

R2 =
1

2T
lim

λT�1

∂ 2ln(Π(y,T ))
∂y2

∣∣∣∣
y=1

=
1
2

Fsε

(
∂ 2Cs

∂h2

(
∂h
∂y

)2
∂ z
∂y

+
∂Cs

∂h
∂ 2h
∂y2

∂ z
∂y

)∣∣∣∣∣
y=1

+
1
2

Sα pαε

(
∂ 2Cα

∂h2

(
∂h
∂y

)2
∂ z
∂y

+
∂Cα

∂h
∂ 2h
∂y2

∂ z
∂y

)∣∣∣∣∣
y=1

=(εqM)2 [[D2s +D2 (M−1)] ν̄sFs +[D2α +D2 (M−1)] ν̄α pαSα ]

=(εqM)2 [D2s + ν̄α pαAD2α +D2 (M−1)(1+ ν̄α pαA)] ν̄sFs (A.14)
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and the third derivative reads

R3 =
1

3!T
lim

λT�1

∂ 3ln(Π(y,T ))
∂y3

∣∣∣∣
y=1

=
1
3!

Fsε
2

(
∂ 3Cs

∂h3

(
∂h
∂y

)3
∂ z
∂y

+2
∂ 2Cs

∂h2
∂h
∂y

∂ 2h
∂y2

∂ z
∂y

+
∂ 2Cs

∂h2
∂h
∂y

∂ 2h
∂y2

∂ z
∂y

+
∂Cs

∂h
∂ 3h
∂y3

∂ z
∂y

)∣∣∣∣∣
y=1

+
1
3!

Sα pα ε
2

(
∂ 3Cα

∂h3

(
∂h
∂y

)3
∂ z
∂y

+2
∂ 2Cα

∂h2
∂h
∂y

∂ 2h
∂y2

∂ z
∂y

+
∂ 2Cα

∂h2
∂h
∂y

∂ 2h
∂y2

∂ z
∂y

+
∂Cα

∂h
∂ 3h
∂y3

∂ z
∂y

)∣∣∣∣∣
y=1

=(εqM)3

[[
D3s +2D2sD2 (M−1)+D3 (M−1)+2(M−1)2 D2

2

]
ν̄sFs

+
[
D3α +2D2α D2 (M−1)+D3 (M−1)+2(M−1)2 D2

2

]
ν̄α pα Sα

]

=(εqM)3

[
D3s + pα ν̄α AD3α +2D2 (M−1)(D2s + pα ν̄α AD2α)+(M−1)

(
D3 +2(M−1)D2

2
)
(1+ pα ν̄α A)

]
ν̄sFs

(A.15)

For T � α−1, Y2F (T )→ R2F = R2/R1 of Eqs. A.14 and A.13, and Y3F (T )→ R3F = R3/R1 of Eqs. A.15
and A.13.
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